메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김선정 (서울대학교) 김수완 (서울대학교) 최진영 (서울대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제24권 제5호
발행연도
2014.10
수록면
518 - 528 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 4차원 시공간 (4D-ST, [x,y,z,t]) 특징을 이용하여 행동 방향을 인식하는 방법을 제안한다. 이를 위해 4차원 시공간 특징점 (4D-STIPs, [x,y,z,t])을 제안하였고, 이는 여러 다른 뷰에서 촬영한 이미지들로부터 복원된 3차원 공간(3D-S, [x,y,z]) 볼륨으로부터 계산된다. 3차원 공간정보를 갖고 있는 3D-S 볼륨과 4D-STIPs는 2차원 공간 (2D-S, [x,y]) 뷰로 사영을 하여 임의의 2D-S 뷰에서의 특징을 생성해 낼 수 있다. 이 때, 사영 방향을 결정 할 수 있으므로, 학습 시 방향에 대한 정보를 포함하여 행동 방향을 인식 할 수 있다. 행동 방향을 인식하는 과정은 두 단계로 나눌 수 있는데, 우선 어떤 생동인지를 인식하고 그 후, 방향 정보를 이용하여 최종적으로 행동 방향을 인식한다. 행동 인식과 방향 인식을 위해, 사영된 3D-S 볼륨과 4D-STIPs은 각각 움직이는 부분과 움직이지 않는 부분에 대한 정보를 담고 있는 motion history images (MHIs)와 non-motion history images (NMHIs)로 구성된다. 이러한 특징들은 행동 인식을 위해, 방향 정보에 상관 없이 같은 행동이면 같은 클래스로 분류되어 support vector data description (SVDD) 분류기로 학습되고, support vector domain density description (SVDDD)을 이용하여 인식된다. 인식된 행동에서 최종적으로 방향을 인식하기 위해 각 행동을 방향 클래스로 분류하여 SVDD 분류기로 학습하고 SVDDD로 인식한다. 제안된 방법의 성능을 보이기 위해서 INRIA Xmas Motion Acquisition Sequences (IXMAS) 데이터셋에서 제공하는 3D-S 볼륨을 사용하여 학습을 하고, 행동 방향 인식 실험이 가능한 SNU 데이터셋을 구축하여 인식 실험을 하였다.

목차

요약
Abstract
1. 서론
2. 제안한 방법
3. 실험 및 결과
4. 결론
References

참고문헌 (29)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-004-002823017