메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
한창완 (부산대학교) 김한종 (부산대학교) 이영석 (부산대학교) 박성훈 (부산대학교)
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2014년도 춘계학술대회
발행연도
2014.5
수록면
201 - 205 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Polyvinyl Alcohol-Hydrogel (PVA-H) is a biomaterial used for manufacturing contact lenses as well as for the medium of drug delivery. Previous studies have also showed that PVA-H exhibits superior biocompatibility with hydrophilic elastic nature. The aim of this study is to examine the possible usage of the PVA-H as cartilage replacement material by determining the static and dynamic mechanical properties of PVA-H with different ratios of polyvinyl alcohol (PVA) and phosphate buffered saline (PBS) compositions.
Three different types of PVA-H specimens were made by changing the ratio of PVA (Sigma-Aldrich) and PBS (Sigma-Aldrich) compositions (PVA-H1: 10wt% PVA and 90 wt% PBS; PVA-H2: 20wt% PVA and 80 wt% PBS; PVA-H3: 25 wt% PVA, 45 wt% PBS and DMSO 30 wt%). Static and dynamic tensile tests under the loading frequencies of 0.001, 0.01, 0.1, and 1 Hz were carried out to measure the biomechanical properties of PVA-H1, -H2 within PBS solution and -H3 within PBS/ DMSO solution.
The equilibrium Young"s moduli (EY) of PVA-H1, -H2 and -H3 evaluated from the static displacement control were 84.2±35.1 kPa (n=10), 254±32.2 kPa (n=10) and 588±38.9 kPa (n=5), respectively. The amplitudes of dynamic tensile moduli were varied from 86.3±33.4 kPa (n=10) at 0.001 Hz to 96.9±42.0 kPa (n=10) at 1 Hz for PVA-H1, 282.7±26.4 kPa (n=10) at 0.001 Hz to 309.1±32.2 kPa (n=10) at 1 Hz for PVA-H2 and from 643.8±49.8 kPa (n=10) at 0.001 Hz to 747.7±67.7 kPa (n=5) at 1 Hz for PVA-H3. According to the current results, the frequency dependence of the magnitude of the dynamic modulus confirms the viscoelastic nature of PVA-H material. However, it can be noted that the dynamic modulus increases by up to a factor of 1.15 for PVA-H1, 1.22 for PVA-H2 and 1.27 for PVA-H3, showing insignificant viscoelasticity compared with that for cartilage. The result that static and dynamic moduli of PVA-H3 are larger than those of PVA-H1 and PVA-H2 also suggests that the amount of PVA composition in PVA-H plays an important role in improving both static and dynamic mechanical strengths of PVA-H plays an important role in improving both static and dynamic mechanical strengths of PVA-H material. The phase angle decreased from 5.2±2.1 ˚ at 0.001 Hz to -0.3±1.7 ˚ at 1 Hz for PVA-H1, from 5.6±0.6 ˚ at 0.001 Hz to -0.3±0.7 ˚ at 1 Hz for PVA-H2 and from 8.2±1.1 ˚ at 0.001 Hz to 0.7±0.7 ˚ at 1 Hz for PVA-H3.

목차

Abstract
1. 서론
2. 시험편 제조 및 방법
3. 결과
4. 결론 및 고찰
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-002868746