2008년 발사된 RapidEye는 5개의 위성을 기반으로 하여 6.5m 공간 해상도의 위성 영상을 하루 간격으로 취득할 수 있는 높은 시간 해상도 특징을 갖는 지구관측위성이다. 제품으로 1B(Basic)와 3A(Ortho)를 제공하고 있으며, 이 중 1B 영상은 좌표등록이 되지 않고 RPCs 정보를 함께 제공해준다. 국내에서는 기 구축된 수치지도를 기반으로 하여 RapidEye의 기하학적 정확도를 보다 향상시킬 수 있으며, 본 논문에서는 1:25,000 수치지도를 이용하여 자동으로 RapidEye 1B영상의 좌표등록을 수행하기 위한 연구를 수행하였다. 1:25,000 수치지도 중 RapidEye 영상과의 매칭에 활용될 레이어를 선별하여 RPCs를 기반으로 RapidEye 1B영상으로 투영시켜 벡터 영상을 생성하고 이와 RapidEye영상의 에지 정보와의 자동 매칭을 통해 RPCs의 정확도를 향상시켰다. 실험 결과 수치지도 대비하여 평균 제곱근 오차 2.8픽셀의 오차가 0.8픽셀로 향상됨을 알 수 있었다.
The RapidEye can acquire the 6.5m spatial resolution satellite imagery with the high temporal resolution on each day, based on its constellation of five satellites. The image products are available in two processing levels of Basic 1B and Ortho 3A. The Basic 1B image have radiometric and sensor corrections and include RPCs (Rational Polynomial Coefficients) data. In Korea, the geometric accuracy of RapidEye imagery can be improved, based on the scaled national digital maps that had been built. In this paper, we present the fully automated procedures to georegister the 1B data using 1:25,000 digital maps. Those layers of map are selected if the layers appear well in the RapidEye image, and then the selected layers are RPCs-projected into the RapidEye 1B space for generating vector images. The automated edge-based matching between the vector image and RapidEye improves the accuracy of RPCs. The experimental results showed the accuracy improvement from 2.8 to 0.8 pixels in RMSE when compared to the maps.