메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박슬아 (Seoul National University) 유기윤 (Seoul National University) 박우진 (Seoul National University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제32권 제4-1호
발행연도
2014.8
수록면
311 - 318 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
건물 데이터는 지도 데이터베이스에서 차지하는 비중이 높고 객체 수도 많을 뿐만 아니라 형상정보 및 속성정보가 빠르게 변화하기 때문에, 최신 정보에 근거한 효율적인 갱신 작업은 필수적이다. 본 연구에서는 갱신 참조 건물데이터와 갱신 대상 건물 데이터의 중첩분석을 통해 갱신이 필요한 객체만을 탐색하여 갱신을 수행하고자 한다. 즉, 건물의 중첩 면적비를 이용하여 매칭 후보쌍을 탐색한 후, 속성정보 비교를 통해 갱신 케이스 분류 조건식을 정의하였으며, 이때 도형정보 갱신 케이스는 총 8가지, 속성정보 갱신 케이스는 총 4가지로 각각 분류하였다. 또한 갱신정보에 대한 갱신 이력 데이터가 자동으로 생성되도록 하여 두 가지 종류의 갱신 케이스 정보를 저장하도록 구성하였다. 갱신 대상 데이터는 수치지도 1:5,000 건물외곽선 레이어로 하였고, 갱신 참조 데이터는 도로명주소전자지도 건물 레이어로 하였으며, 서울시 관악구 지역을 대상지역으로 선정하였다. 본 연구의 매칭기반 갱신기법을 적용한 결과, 전체 건물데이터 중, 82.1%의 건물이 도형정보를 수정하였고, 34.5% 건물이 속성정보를 수정하였다.

목차

Abstract
초록
1. 서론
2. 건물 데이터의 매칭기반 갱신 케이스 분류 및 갱신 이력 코드 생성
3. 적용 및 결과
4. 결론
References

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-530-002847129