메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재구 (서울대학교) 이태훈 (서울대학교) 윤성로 (서울대학교)
저널정보
한국통신학회 한국통신학회지(정보와통신) 한국통신학회지 (정보와통신) 제31권 제11호
발행연도
2014.10
수록면
14 - 26 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본고는 빅데이터 시대에 새로운 가치를 창출할 수 있는 정보분석을 위한 기계학습을 설명하고자 한다. 기계학습의 일반적 정의와 특성, 그리고 빅데이터 특성에 의한 기계학습의 변화를 확인하고 특별히 다양한 변화 중에서 분산 및 병렬화를 통한 스케일러블 기계학습을 중점으로 주어진 빅데이터를 효율적으로 분석할 수 있는 다양한 플랫폼들과 프레임워크들을 설명한다. 더불어 실제 다양한 응용 활용을 제공하고 있는 Google API 같은 빅데이터 분석 기계학습 프로젝트들을 통해서 기계학습을 통한 빅데이터 분석에 대한 폭넓은 이해를 전달하고자 한다.

목차

요약
Ⅰ. 서론
Ⅱ. 기계학습 (Machine Learning)
Ⅲ. 빅데이터 (Big Data)
Ⅳ. 빅데이터 분석을 위한 기계학습
Ⅴ. 스케일러블 기계학습
Ⅵ. 빅데이터을 위한 기계학습 분석 도구
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002885149