메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
방정욱 (충북대학교) 권오욱 (충북대학교)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제6권 3호
발행연도
2014.9
수록면
155 - 164 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
This paper proposes a new method to determine the recognition units for large vocabulary continuous speech recognition (LVCSR) in Korean by applying unsupervised segmentation and merging. In the proposed method, a text sentence is segmented into morphemes and position information is added to morphemes. Then submorpheme units are obtained by splitting the morpheme units through the maximization of posterior probability terms. The posterior probability terms are computed from the morpheme frequency distribution, the morpheme length distribution, and the morpheme frequency-of-frequency distribution. Finally, the recognition units are obtained by sequentially merging the submorpheme pair with the highest frequency. Computer experiments are conducted using a Korean LVCSR with a 100k word vocabulary and a trigram language model obtained by a 300 million eojeol (word phrase) corpus. The proposed method is shown to reduce the out-of-vocabulary rate to 1.8% and reduce the syllable error rate relatively by 14.0%.

목차

ABSTRACT
1. 서론
2. 기존 방법
3. 제안 방법
4. 인식단위 실험 결과
5. 음성인식 실험 결과
6. 결론
참고문헌

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-700-002784165