메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한명지 (서울대학교) 임지혁 (서울대학교) 최준용 (서울대학교) 김현준 (서울대학교) 서정주 (서울대학교) 유철 (서울대학교) 김성렬 (건국대학교) 박근수 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.41 No.9
발행연도
2014.9
수록면
617 - 624 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
악성 트래픽은 디도스 공격, 봇넷 통신 등의 인터넷 망을 교란시키거나 특정 네트워크, 서버, 혹은 호스트에 피해를 끼칠 의도를 가지고 발생시키는 트래픽을 지칭한다. 이와 같은 악성 트래픽은 인터넷이 발생한 이래 꾸준히 양과 질에서 진화하고 있고 이에 대한 대응 연구도 계속되고 있다. 이 논문에서는 악성 트래픽을 기존 X-means 클러스터링 알고리즘을 적용하여 효과적으로 탐지하는 방법을 제시하였다. 특히 악성 트래픽의 통계적 특징을 분석하고 클러스터링을 위한 메트릭을 정의하는 방법을 체계적으로 제시하였다. 또한 두 개의 공개된 트래픽 데이터에 대한 실험을 통해 실효성을 검증하였다.

목차

요약
Abstract
1. 서론
2. 클러스터링
3. 악성 트래픽 탐지 방법
4. 데이터셋
5. 실험
6. 실험결과
7. 결론
References

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002591773