메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김성현 (동아대학교) 양선 (동아대학교) 고영중 (동아대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제41권 제8호
발행연도
2014.8
수록면
580 - 585 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구는 ‘위키피디아 데이터를 이용한 병렬 문장 추출’이라는 주제에 대해서, 기존에 해외에서 사용되었던 다양한 방법을 한국어 위키피디아 데이터에 실제로 적용해보고 그 결과를 정리하여 보고한다. 실험 방식은 두 가지로 나눌 수 있는데, 첫 번째는 번역 확률을 이용하는 방법으로 세종 병렬 말뭉치 등의 기존 자원으로부터 번역 확률을 추출하여 사용한다. 두 번째는 사전을 이용하는 방법으로, 위키피디아 타이틀로 구성된 위키 사전(Wiki dictionary)을 기본으로 하여, MRD(machine readable dictionary) 정보와 숫자 사전을 추가로 사용한다. 실험 결과, 기존 자원만 이용한 경우보다 위키피디아 데이터를 결합하여 사용한 경우에 매우 큰 폭의 성능 향상을 얻어, 최종적으로 F1-score 57.6%의 우수한 성능을 산출하였다. 또한 토픽 모델(topic model)을 이용한 실험도 추가로 수행하였는데, F1-score 51.6%로 최종 성능 면에서는 낮았지만 비지도 학습 방법이라는 장점을 고려할 때 추가 연구에 대한 여지가 있다고 볼 수 있다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방법
4. 실험
5. 추가 실험
6. 결론
References

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002471187