메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
L Luo (the Hong Kong Polytechnic University) S J Shao (the Hong Kong Polytechnic University) H L Shen (the Hong Kong Polytechnic University) J H Xin (the Hong Kong Polytechnic University)
저널정보
한국색채학회 한국색채학회 학술대회 2011 International Color Symposium In Autumn
발행연도
2011.10
수록면
21 - 25 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the normal colour measurement method of using a spectrophotometer is impossible to measure colours of multi-coloured textiles fabric samples such as color printing sample, and knitted samples using colored yams, color measurement method based on the multispectral imaging technique is a viable alternative. In this paper, we propose a new novel approach to represent the spectral colors of these textile samples. Firstly, the reflectance of captured image by a self-developed multispectral imaging system is recovered by the Wiener estimation method at each pixel spatial location. Secondly, a bilateral filter method is used to remove the signal dependent noise mainly caused by the imaged object during the imaging acquisition procedure. After that, an unsupervised tree structure is constructed to segment denoised image. Finally, all color regions are extracted from the segmented image of a multi-color printing sample to represent the dominant colors weighted with the segmented block size. In the case of representation of yam-dyed textile image, a K-mean clustering method is further used to extract the spectral colors of weft and warp yam, respectively.

목차

Abstract
Introduction
Reflectance recovering based on Wiener estimation method
Noise removal using non-local mean filters
Color segmentation method based on unsupervised segmentation
Experiment and results discussion
Conclusion
Reference

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-650-002482489