메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박근호 (부산대학교) 이유리 (부산대학교) 김형남 (부산대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제51권 5호
발행연도
2014.5
수록면
197 - 206 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
운동심상(Motor imagery) 기반의 뇌-컴퓨터 인터페이스(Brain-computer Interface)는 주로 뇌전도(Electroencephalography, EEG)를 이용하여 사용자의 자발적인 운동 의지를 읽는 기술로 최근 주목받고 있다. 이 중에서도 피실험자의 운동 의지를 정확히 해석하기 위해 감각운동 영역(sensorimotor area)의 일부분에서 나타나는 -대역(8-13Hz)의 전위 감소 현상인 event related desynchronization(ERD)을 분석하는 연구가 많이 진행되고 있다. 하지만 EEG는 공간 해상도가 낮고 사용자에 따라 ERD가 발생하는 주파수 대역이 다소 차이가 있어 추정에 어려움이 있다. 이에 대한 개선 방법의 하나로서 공간 필터를 구현하는 common spatial pattern (CSP)과 필터 뱅크(filter bank)를 결합한 형태인 discriminative filter bank common spatial pattern(DFBCSP)이 제안되었다. 그러나 DFBCSP는 EEG 신호의 평균 전력(power)의 Fisher ratio를 이용하여 사용자에 따른 효과적인 주파수 대역을 포함하는 discriminative filter bank(DFB)를 구성하여 분류 정확도를 향상시켰지만 ERD의 공간 패턴이 나타나는 적절한 필터를 선택하지 않는 경우가 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 EEG 신호의 평균 전력 대신 CSP의 특성 벡터를 이용하여 DFB를 구성하는 방법을 제안한다. 기존의 방법과 제안한 방법의 필터 선택 결과와 분류 정확도 분석을 통해 CSP 특성 벡터가 DFB 구성에 더욱 효과적임을 보인다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. Discriminative filter bank common spatial pattern (DFBCSP)
Ⅲ. CSP 특성 벡터와 LDA를 이용한 DFBCSP
Ⅳ. 모의실험 결과
Ⅴ. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0