메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진수 (Hanyang University) 윤대원 (DANAM systems) 박태상 (Hanyang University) 정재은 (Hanyang University) 오재응 (Hanyang University)
저널정보
한국소음진동공학회 한국소음진동공학회논문집 한국소음진동공학회논문집 제23권 제12호
발행연도
2013.12
수록면
1,045 - 1,055 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It is true that the dependency on import is currently high in case of the safety checkup system of domestic airplanes, and it is at the point of time that localization of HUMS for small airplanes is required. In this study, the design factors were selected for the lightweight of HUMS for small airplanes by using Pro-Engineer which is a design tool and Abaqus. 9 models were made through experiment plans with Taguchi method for this, and the each model for weight lightening was selected through vibration analysis and shock analysis while in operation with experiment profile values. After fabricating HUMS, it was verified that as a result of experiment with the same profile values as the analysis, there was similarity between the analyzed values and values of the experiment. As a result of performing weight lightening which is the purpose of the study, electronic performance for small airplanes is assured and a design plan reducing 15 % weight compared to the targeted weight was deduced. Besides, it could be verified that the light weight model satisfied the maximum allowable displacement value of PCB[printed circuit board] and accordingly satisfied electronic properties of HUMS. In this study, the reliability of a product was certified through the result of an experiment on ground. If the reliability of HUMS were verified through a test flight in the future, it is considered that it would make a big contribution to localization of aerospace electronic equipment.

목차

ABSTRACT
1. 서론
2. HUMS 개요 및 구성
3. 다구찌 기법을 이용한 HUMS 하우징 최적화
4. 유한요소 해석을 통한 HUMS 하우징의 경량화 설계
5. 실험적 방법에 의한 FEM 해석 검증
6. 결론
References

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-530-001555355