메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최장원 (연세대학교) 최윤식 (연세대학교) 김용구 (한독미디어대학원대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제19권 제3호
발행연도
2014.5
수록면
329 - 341 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
커널 기반 평균 이동 물체 추적(kernel-based mean-shift object tracking) 방법은 신뢰할 수 있는 물체 추적의 실시간 구현이 가능하기 때문에 최근 많은 관심을 받고 있다. 이 알고리즘은 표적 모델과 표적 후보 간의 히스토그램 유사성 비교를 통해 최적의 평균이동 벡터를 찾는데, 실시간 구현을 위해 대부분의 알고리즘에서는 색-공간의 균일 양자화를 수행한다. 하지만, 영상의 명암 분포가 편중되어 있는 경우 색-공간의 양자화 후 히스토그램 분포가 몇 몇 빈에 집중되기 때문에 히스토그램 유사성 비교의 정확도를 감소시키게 되고, 따라서 추적의 성능이 저하될 수 있다. 이러한 문제를 해결하기 위해 히스토그램 빈을 적응적으로 조절하는 비-균일 양자화 알고리즘이 제안되었으나 높은 복잡도로 인해 실시간 추적 알고리즘에 부적합한 단점을 갖고 있다. 이에 본 논문에서는 표적 모델에 대한 히스토그램 평활화를 수행한 후 색-공간의 균일 양자화를 수행하는 형태의 고속 비-균일 양자화 기법을 제안함으로써, 색-공간 양자화 후에도 표적 모델의 명암 분포가 전 색-영역에 고르게 분포되도록 함으로써 실시간 평균 이동 추적 기법의 추적 성능이 개선될 수 있도록 하였다. 제안하는 색-공간 양자화 기법을 통해 표적 모델과 비교 후보군 사이에 비교 대상이 되는 색 요소가 증가하게 되며, 보다 정확도 높은 히스토그램 유사성 결과를 얻을 수 있었다. 물체 추적용 영상을 통한 실험 결과, 제안하는 알고리즘은 복잡도 증가가 거의 발생하지 않는 동시에, 기존 비-균일 양자화 알고리즘 결과와 유사하거나 좀 더 나은 추적 결과를 보여주었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 평균 이동 물체 추적 알고리즘
Ⅲ. 비-균일 색-공간 양자화를 이용한 평균 이동 물체 추적 기법
Ⅳ. 실험 및 결과
Ⅳ. 결론 및 향후 연구
참고문헌 (References)

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0