메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임순정 (이화여자대학교) 한미선 (이화여자대학교)
저널정보
한국번역학회 번역학연구 번역학연구 제15권 제1호
발행연도
2014.3
수록면
177 - 209 (33page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study is an attempt to make productive recommendations for the improvement of translation quality in automated translation. With the advent of automated translation in 1949, the field of machine translation has made remarkable progress. Despite its advancement, however, translation quality has failed to meet the expectations of its users. In this sense, it is timely and appropriate to seek ways to improve the translation quality of automated translation services as the user base for machine translation has been rapidly expanding. Against this backdrop, as a contribution towards finding ways to improve translation quality in machine translation, this study explores the correlation between translation quality and the units of translations in automated translation by using “Google Translate”, one of the most popular statistic-based machine translation tools. A set of Korean product information texts, which are composed of a total of 23 smartphone models compiled from the Samsung Galaxy website, are compared and analyzed with their parallel texts translated by Google Translate into English and French. To clearly demonstrate the correlation between units of translation and translation quality in the original and translated texts are used as analytical criteria, which are divided into three categories: functional units, semantic units, and dialectical units, which were first proposed by Vinay & Darbelnet (1958). And based on the results of the analysis, this study attempts to make constructive recommendations for translation quality improvement in statistic-based machine translation models.

목차

1. 서론
2. 구글 번역과 번역 단위
3. 분석대상 및 분석방법
4. 분석결과
5. 결론 및 논의
참고문헌
Abstract

참고문헌 (42)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-700-001420457