메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국소음진동공학회 한국소음진동공학회논문집 한국소음진동공학회논문집 제23권 제4호
발행연도
2013.4
수록면
347 - 355 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A damage estimation method for monopile support structure of offshore wind turbine using modal properties and committee of neural networks is presented for effective structural health monitoring. An analytical model for a monopile support structure is established, and the natural frequencies, mode shapes, and mode shape slopes for the support structure are calculated considering soil condition and added mass. The input to the neural networks consists of the modal properties and the output is composed of the stiffness indices of the support structure. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated stiffness indices from different neural networks are averaged. Ten damage cases are estimated using the proposed method, and the identified damage locations and severities agree reasonably well with the exact values. The accuracy of the estimation can be improved by applying the committee of neural networks which is a statistical approach averaging the damage indices in the functional space.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0