메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국소음진동공학회 소음·진동 소음진동 제7권 제2호
발행연도
1997.4
수록면
319 - 329 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Wigner-Ville distribution has been recognized as a useful tool and applied to various types of mechanical noise and vibration signals, but its limitation which mainly comes from the cross-talk has not been well addressed. The cross-talk takes place for a signal with multiple components, simply because the Wigner-Ville distribution is a bilinear transform. The cross-talk often causes a negative value in the distribution. This cannot be accepted for the Wigner- Ville distribution, because it is an expression of power. Smoothing the Wigner-Ville distribution by convoluting it wih a window, is most commonly used to reduce the cross-talk. There can be infinite number of distributions depending on the windows. In this paper, we attempted to develop a distribution which is the best or the optimal in reducing the cross-talk. This could be possible by employing the ambiguity function. For a general signal, however it is difficult to express the ambiguity function as a mathematically closed form. This requires an appropriate modeling to make such expression possible. We approximated the Wigner-Ville distribution as a sum of linear segments. In the ambiguity function domain, the legitimate components are reflected as linear lines passing through the origin. Every lines has its own length and slope. But, the cross-talk is widely distributed in the ambiguity function plane. Based on this realization, we proposed a two-dimensional window which is in fact 'rotating window', that can eliminate cross-talk component. The rotating window is examined numerically and is found to have a better performance in reducing the cross-talk than conventional windows, the Gaussian window.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0