메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kyoung-jae Kim (Dongguk University_Seoul) Youngtae Kim (Dongguk University_Seoul)
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2013년 추계학술대회
발행연도
2013.11
수록면
196 - 201 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Personalization aims for providing customized contents to each user by using their personal preferences. In this sense, the core parts of personalization are regarded as recommendation technologies which can recommend proper contents or products to each user according to each user’s preference. Prior studies have proposed novel recommendation technologies because they recognized the importance of recommender systems. Among several recommendation technologies, collaborative filtering (CF) have been actively studied and applied in real-world. The CF, however, often suffer sparsity or scalability problems. Prior research also recognized the importance of these two problems and proposed many solutions for them. Many prior studies, however, had problems that it needed additional time and cost for solving the limitations by using additional information from other sources besides the existing user-item matrix. This study proposes novel implicit rating approach for collaborative filtering to mitigate the sparsity problem and to enhance the performance of recommender systems. In this study, we propose the methods of reducing the sparsity problem through the supplement of the user-item matrix based on implicit trust score which measures the trust level among users by using the existing user-item matrix. This study provides preliminary experimental results to test usefulness of the proposed model.

목차

Abstract
Introduction
Prior Researches
Implicit Trust-based Filtering
Experiments
Conclusions

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-003-001311542