메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Araz Hasheminezhad (Iran University of Science and Technology)
저널정보
한국철도학회 International Journal of Railway International Journal of Railway Vol.7 No.1
발행연도
2014.3
수록면
16 - 23 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reduction in railway-induced vibrations in urban areas is a very challenging task in railway transportation. Many mitigation measures can be considered and applied. Among these, a little attention has been paid to trenches. In this study, a numerical investigation on the effectiveness of in-filled trenches with pipes in reducing railway vibrations due to passing trains is presented. Particularly, a series of two-dimensional dynamic analysis was performed to model the behavior of ballasted railway track under harmonic load with ABAQUS software as a Finite Element method. In so doing, two types of in-filled trenches with pipes with steel and concrete materials have been investigated in this paper. In addition, effectiveness of pipes made of steel and concrete, filled with loose sand and clay in railway-induced vibration reduction has been assessed. The results point out that using in-filled trench with pipes does not effective a lot on railway-induced vibration reduction in comparison to other railway-induced vibration reduction methods. However, in-filled trenches with steel pipes are much more effective than in-filled trenches with concrete pipes. Moreover, filling pipes with loose sand and clay does not have any effect on vibration reduction efficiency of these in-filled trenches.

목차

Abstract
1. Introduction
2. Railway-Induced VibrationReduction Methods
3. Literature survey on using Trenches as a Railway-induced Vibration Reduction Method
4. Numerical Model Specifications
5. Results and Discussion
6. Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-320-001313528