메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이태주 (중앙대학교) 심귀보 (중앙대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제24권 제1호
발행연도
2014.2
수록면
90 - 95 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인간과 기계를 연결하는 새로운 인터페이스인 Brain-computer interface (BCI)를 이용해 휠체어를 제어하거나 단어를 입력하는 등, 사용자를 위한 다양한 장치를 개발하는 연구들이 진행되어 왔다. 특히 최근에는 뇌파를 이용한 음성인식을 구현하고 이를 통해 무음통신 등에 적용하려는 시도들이 있었다. 본 논문에서는 이러한 연구의 일환으로 electroencephalogram (EEG) 기반의 언어 인식 시스템을 개발하기 위한 기초 단계로서, 국제음성기호에 기반을 둔 모음들의 특징을 추출하는 방법에 대한 연구를 진행하였다. 실험은 건장한 세 명의 남성 피험자를 대상으로 진행되었으며, 한 개의 모음을 제시하는 첫 번째 실험 과정과 두 개의 연속된 모음을 제시하는 두 번째 실험 과정으로 두 단계에 나누어서 실험이 진행되었다. 습득된 64개의 채널중 선택적으로 32개의 채널만을 사용해 특징을 추출하였으며, 사고 활동과 관련된 전두엽과 언어활동에 관련된 측두엽을 기준으로 영역을 선택하였다. 알고리즘 적용을 위해서 특징으로는 신호의 고유 값을 사용하였고, support vector machine (SVM)을 이용하여 분류를 수행하였다. 실험 결과, 첫 번째 단계의 실험을 통해서, 언어의 뇌파를 분석하기 위해서는 10차원 이상의 특징 벡터를 사용해야 됨을 알게 되었고, 11차원의 특징 벡터를 사용할 경우, 평균분류율은 최고 95.63 %로 /a/와 /o/를 분류할 때 나타났고, 가장 낮은 분류율을 보이는 모음은 /a/와 /u/로 86.85 %였다. 두 번째 단계의 실험에서는 두 개 이상의 모음을 발음하는 것이 단일 모음 발음과 어떤 차이가 있는지 확인해 보았다.

목차

요약
Abstract
1. 서론
2. 분류 알고리즘
3. 실험방법
4. 실험결과 및 고찰
5. 결론 및 향후연구
References

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-004-001367892