메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오한글 (홍익대학교) 조성원 (홍익대학교) 정선태 (숭실대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제24권 제1호
발행연도
2014.2
수록면
71 - 77 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 저조도 및 음영이 생기는 조명 환경하에서 성능이 개선된 계량기 숫자 인식 방법을 제안한다. 저조도 및 음영 문제를 해결하기 위해 LN(Local Normalization) 처리 기법을 이용한 조명 정규화를 수행한 후, 계량기 숫자 영역 검출과 3단계 계량기 숫자 분할이 이루어진다. 마지막으로 분할된 숫자 데이터를 분류하기 위한 하이브리드 숫자 분류기가 적용된다. 제안된 하이브리드 숫자 분류기는 역전파 신경망과 템플레이트 매칭의 연속 결합으로 이루어지고, 계량기 숫자 분류에 보다 강인한 휴리스틱 규칙에 의해 최종적으로 숫자를 분류한다. 저조도 및 음영 조명 환경하의 다양한 계량기 종류에 대해 직접 촬영하여 자체 제작한 계량기 이미지 데이터베이스에 기반한 실험을 통해 본 논문에서 제안한 숫자 인식 방법을 평가하고, 제안된 계량기 숫자 인식 방법이 효과적으로 잘 동작함을 확인하였다.

목차

요약
Abstract
1. 서론
2. 계량기 숫자 영역 검출
3. 계량기 숫자 분할
4. 계량기 숫자 인식
5. 실험 결과
6. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-004-001367867