메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤재성 (고려대학교) 장재욱 (고려대학교) 김휘강 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제24권 제1호
발행연도
2014.2
수록면
145 - 154 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 범죄수사에서 사용되는 프로파일링 기법을 이용한 모바일 악성코드 행위 프로파일링을 통하여 효율적인 모바일 악성코드 분류 방법론 Andro-profiler를 제안한다. Andro-profiler는 클라이언트/서버 형태로, 클라이언트 앱이 모바일기기에 설치되어 사용자가 사용하고 있는 앱에 대한 정보를 서버에 전송하고, 서버에서는 해당 앱을 동적 분석 도구인 Droidbox가 설치된 에뮬레이터에서 실행시키면서 발생되는 시스템 콜과 에뮬레이터 로그를 이용하여 해당 앱의 행동을 프로파일링하며, 해당 앱의 프로파일링 목록을 저장된 악성코드 프로파일링 DB와 비교하여 악성유무를 판단하고, 악성코드로 판단될 경우 분류를 실시하여 클라이언트에게 결과를 통보한다. 실험결과, Andro-profiler는 1MB의 악성코드를 분류하는데 평균 55초가 소요되었고, 99%의 정확도로 악성코드를 분류하는 것을 확인하였으며, 기존 방법론보다 더 정확하게 악성코드를 분류할 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 행위 프로파일링(Behavior profiling)
Ⅲ. Andro-profiler 시스템
Ⅳ. 실험 및 성능 평가
Ⅴ. 결론
References

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001283603