메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2013년도 학술대회
발행연도
2013.12
수록면
2,947 - 2,950 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this study, the dynamic behavior of a hollow cylinder under a periodic, consecutive moving force applied at the inner hole is investigated. The cylinder is assumed to deform large compared to the classical linear elastic material, so that the Neo-Hookean constitutive model is employed. The cylinder is fixed at the top and bottom surfaces in the present model. The resulting governing equation and the associated boundary conditions appear to be highly nonlinear in the cylinder’ s displacements. After performing the eigen analysis on the present system, an appropriate biorthogonality condition is obtained. Galerkin’ s method is applied, in conjunction with the eigen analysis results, to obtain the discretized equation of motion, which include the nonlinearity of both the governing field equation and boundary conditions. As a result of the successive nonlinear analysis, the cricical speed of the moving force could be derived and the influences of the nonlinearty on the dynamic behavior of the cylinder are examined. with the eigen analysis results, to obtain the discretized equation of motion, which include the nonlinearity of both the governing field equation and boundary conditions. As a result of the successive nonlinear analysis, the critical speed of the moving force could be derived and the influences of the nonlinearty on the dynamic behavior of the cylinder are examined.

목차

Abstract
1. 서론
2. 해석 방법
3. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0