메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tessei Yamada (Gunma National College of Technology) Tatsuya Arakawa (Gunma National College of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2013
발행연도
2013.10
수록면
1,199 - 1,202 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Question answering generally generates the answer to the question by extracting the named entity from the sentences containing the answer to the question from information sources. However, it is not always true that a named entity is an answer to the question. So we propose a method for generating the answer sentence using statistical machine translation. The probability models are constructed by learning from enormous samples of the set of question sentence, extracted sentence, and answer sentence. The question sentence and the sentence extracted by the question answering from information source are regarded as an input of machine translation. They are translated to a suitable answer sentence to the question. In this paper, we attempted to apply our method to several simple types questions that can also be answered by the named entity extraction.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORKS
3. STATISTICAL MACHINE TRANSLATION
4. OUR APPROACH
5. CONCLUSION AND FUTURE WORKS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0