메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Huiyong Kim (Sogang University) Jun Hyung Park (Sogang University) Kwang Soon Lee (Sogang University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2013
발행연도
2013.10
수록면
570 - 573 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Semi-conductor manufacturing is composed of a large number of processing steps, but only a very limited number of processing wafers are monitored after few critical steps of manufacturing process, because metrology is costly and requires a long measurement delay usually. The wafers are inevitably subject to various perturbations, and quality variables (QVs) are scattered around their target values. The most important mission of R2R control in semiconductor processes is to reduce the variation of QVs instead of set point tracking and/or regulation against persistent disturbances. EWMA-based methods are dominantly employed in R2R control in present semi-conductor industries although the EWMA filtering has limitations in more detailed handling of noisy signals. In this study, quadratic iterative learning control (QILC) combined with the Kalman filter has been evaluated as a replacement of EWMA R2R control for tighter reduction of QV variations. Different types of stochastic disturbance are considered in the bias in a linear static model, and QILC algorithms are derived. The performance of the QILC methods was compared with that of the EWMA R2R control method.

목차

Abstract
1. INTRODUCTION
2. PROCESS MODEL AND IDENTIFICATION
3. R2R CONTROL ALGORITHMS
4. PERFORMANCE OF R2R-QILC
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0