메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yang Shi (Qilu University of Technology) Young-Im Cho (The University of Suwon)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2013
발행연도
2013.10
수록면
539 - 542 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to overcome some shortages of SVM, an improved classification model is introduced in this paper. For the first problem about isolated points or noises mixed in training data sets which will cause overfitting problem and decrease the capability of generalization for SVM, we proposed modified covering algorithm to find out the isolated points and deal with it by the definition of covering sample density. As for the second problem, time cost for training SVM on large data sets usually is high; we introduce modified CA as the pre-classification step to reduce the training sample scale, by constructing a series of covers and deleting the isolated points, and then use the centroids of the rest covers as the new training data sets for SVM training. By the experiments on the real world data sets, results show the training time can drop significantly, and the accuracy is very close to Lib-SVM. So, CA-SVM is an efficient classification model.

목차

Abstract
1. INTRODUCTION
2. MODIFIED COVERING ALGORITHM
3. SVM BASED ON MODIFIED CA
4. EXPERIMENTS AND RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0