메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shou-Han Zhou (The University of Melbourne) Ying Tan (The University of Melbourne) Bai, Zhao (Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital) Denny Oetomo (The University of Melbourne)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2013
발행연도
2013.10
수록면
207 - 212 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
For tasks which require a robot to track some particular points along a trajectory (instead of the whole trajectory), there exists redundancy. This redundancy results in an increase in the feasibility in the controller design, enabling the possibility of the robot to obtain better performance by satisfying secondary objectives whilst performing the primary objective of tracking the target points. This paper addresses the task redundancy by using point-to-point learning control. It is shown to be an effective tool to accommodate trajectory redundancy since it has the ability to fully explore the increased feasibility resulting from such redundancy. Following the similar idea widely used in kinematic redundancy, a decomposition technique is used. This leads to a simplification of constrained optimization and provides a suboptimal performance in terms of secondary task while the primary task is always achieved. As an example, the formulation is implemented in an on-line fashion to enable a non-redundant robot to track a target point whilst avoiding an obstacle. Simulation results shows good performance from the proposed online algorithms.

목차

Abstract
1. INTRODUCTION
2. PROBLEM FORMULATION
3. MAIN RESULTS
4. ONLINE IMPLEMENTATION FOR OBSTACLE AVOIDANCE
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0