메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
MinKyu Kim (Korea Institute of Science and Technology) Keehoon Kim (Korea Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2013
발행연도
2013.10
수록면
169 - 172 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Surface electromyography (sEMG) signals have been applied as control commands in numerous humanrobot interface systems and have been deployed for rehabilitation or clinical applications. Although lots of previous workers have tried to determine features appropriate for specific sEMG-signal classification problems, little of this work has involved deeply searching for the inner characteristics of the signals. In this study, we try to evaluate the properties of the transient state of sEMG signals on randomly mounted, dry-type electrodes and use this to rapidly predict three kinds of hand configurations - rock, scissors and paper motions. In experiments, subjects performed a rock-scissor-paper game with a virtual hand. For data acquisition, the sEMG signals were sampled at 1 kHz with eightchannel electrodes (wearable, dry type) that were randomly mounted on forearms [2]. The results verified that the proposed algorithm, using the property of the transient state of sEMG signals, works successfully.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND
3. Methods and Algorithms
4. EXPERIMENT AND RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0