메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진율 (수원대학교) 김용석 (수원대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제23권 제5호
발행연도
2013.10
수록면
423 - 430 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
통상의 얼굴인식은 사람이 똑바로 카메라를 응시해야 하거나, 혹은 이동하는 통로의 정면과 같이 특정 얼굴포즈를 취득할 수 있는 위치에 카메라를 설치하는 등 통제적인 환경에서 이루어진다. 이러한 제약은 사람에게 불편을 초래하고 얼굴인식의 적용 범위를 제한하는 문제가 있다. 본 논문은 이러한 기존방식의 한계를 극복하기 위하여 대상이 특별한 제약 없이 자유롭게 움직이더라도 동영상 내에서 대상의 얼굴을 추적하고 얼굴인식을 하는 방법을 제안한다. 먼저 동영상 속의 얼굴은 IVT(Incremental Visual Tracking) 추적기를 사용하여 지속적으로 추적이 되며 이때 얼굴의 크기변화와 기울기가 보상이 되어 추출이 된다. 추출된 얼굴영상은 사람과 카메라의 각도를 특정각도로 제한하지 않았으므로 다양한 포즈를 가지게 되며 따라서 얼굴인식을 하기 위해서 포즈에 대한 판정이 선행되어야 한다. 본 논문에서는 PCA(Principal Component Analysis)기반의 얼굴포즈판정방법을 사용하여 추적기에서 추출된 이미지가 5개 포즈별 DB속의 학습된 포즈와 유사한 것으로 판정될 때만 얼굴인식을 수행하여 인식률을 높이는 방법을 제안하였다. 얼굴인식에서는 PCA, 2DPCA, (2D)²PCA의 인식알고리즘을 사용하여 얼굴인식률과 수행시간을 비교 제시하였다.

목차

요약
Abstract
1. 서론
2. 얼굴추적기(Face tracker)
3. 얼굴인식 알고리즘
4. 얼굴 포즈 분류
5. 제안된 알고리즘의 구현 및 실험결과
6. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0