메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최보민 (가천대학교) 공종환 (가천대학교) 한명묵 (가천대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제23권 제5호
발행연도
2013.10
수록면
392 - 399 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
IT 기술 발달 및 정보화 시대로 인해 우리 사회 전반에 걸쳐 많은 부분이 네트워크에 대한 의존도가 상당히 커지고 있다. 이는 다양한 정보 및 서비스 획득의 용이성을 제공해 주는 이점이 있는 반면에, 네트워크 침입자들로 하여금 더 많은 취약성의 루트를 제공할 수 있는 부정적 효과도 따르고 있다. 이는 네트워크 이용과 함께 증가한 패킷의 다양한 루트를 악용하여 네트워크의 연결된 시스템에 서비스 장애나 마비를 일으키는 악의적인 위협 및 공격 또한 함께 증가하고 있음을 의미하며 이러한 문제에 대한 해결책이 시급히 필요하다. 이에 보안 분야에서는 네트워크 패킷이나 시스템 로그 등을 수집하여 이를 분석하고 이러한 위협에 대응할 수 있는 다양한 보안 솔루션을 개발하고 있으나, 기존의 분석 방식들로는 점차 방대해져가고 있는 보안 데이터들을 처리하는데 데이터 저장 공간 부족 및 이에 따른 성능 저하와 같은 여러 문제점들이 발생하고 있다. 따라서 본 논문에서는 보안 영역 분야에서도 최근 이슈가 되고 있는 빅 데이터 기술을 적용하여 이러한 문제점들을 개선하는 모델을 제안한다. 즉, 대용량 데이터 저장 기술인 NoSQL을 통해 점차 방대해져 가는 패킷데이터를 수집하고, 분산 프로그래밍모델인 맵리듀스 기반의 K-means 클러스터링을 설계하여 네트워크 침입에 대한 특징 및 패턴을 추출 할 수 있는 분석모델을 제안하고 실험을 통하여 이에 대한 우수성을 입증하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 방법
4. 실험 및 결과
5. 결론 및 향후 연구방향
References

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0