메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
우소라 (서울대학교) 백종진 (서울대학교) 이현호 (서울대학교) 한지영 (한국형수치예보모델개발사업단) 서재명 (서울대학교)
저널정보
한국기상학회 대기 대기 Vol.23 No.3
발행연도
2013.9
수록면
293 - 305 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Nonhydrostatic effects on convectively forced mesoscale flows in two dimensions are numerically investigated using a nondimensional model. An elevated heating that represents convective heating due to deep cumulus convection is specified in a uniform basic flow with constant stability, and numerical experiments are performed with different values of the nonlinearity factor and nonhydrostaticity factor. The simulation result in a linear system is first compared to the analytic solution. The simulated vertical velocity field is very similar to the analytic one, confirming the high accuracy of nondimensional model’s solutions. When the nonhydrostaticity factor is small, alternating regions of upward and downward motion above the heating top appear. On the other hand, when the nonhydrostaticity factor is relatively large, alternating updraft and downdraft cells appear downwind of the main updraft region. These features according to the nonhydrostaticity factor appear in both linear and nonlinear flow systems. The location of the maximum vertical velocity in the main updraft region differs depending on the degrees of nonlinearity and nonhydrostaticity. Using the Taylor-Goldstein equation in a linear, steady-state, invscid system, it is analyzed that evanescent waves exist for a given nonhydrostaticity factor. The critical wavelength of an evanescent wave is given by λ<SUB>c</SUB> = 2πβ, where β is the nonhydrostaticity factor. Waves whose wavelengths are smaller than the critical wavelength become evanescent. The alternating updraft and downdraft cells are formed by the superposition of evanescent waves and horizontally propagating parts of propagating waves. Simulation results show that the horizontal length of the updraft and downdraft cells is the half of the critical wavelength (πβ) in a linear flow system and larger than πβ in a weakly nonlinear flow system.

목차

Abstract
1. 서론
2. 수치 모형과 실험 설계
3. 결과 및 논의
4. 요약
REFERENCES

참고문헌 (27)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0