메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김준형 (연세대학교) 류승철 (연세대학교) 김승룡 (연세대학교) 손광훈 (연세대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 2013년도 한국방송공학회 하계 학술대회
발행연도
2013.6
수록면
248 - 251 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
컴퓨터 비전에서 BoW를 이용한 장면 분류 기법에 대한 연구가 활발히 진행되고 있다. BoW 기법의 장면 분류는 K-means 클러스터링을 통하여 코드북을 생성하는 과정에서 트레이닝 이미지의 클래스 정보를 활용하지 않기 때문에 성능이 제한적이라는 문제점을 가지고 있다. 본 논문에서는 BoW를 이용한 장면 분류 과정에서 코드북 생성을 위하여 각각 특징 기술자들의 유클리디안 거리뿐만이 아니라 클래스 확률 밀도 함수들의 히스토그램 교차값을 최소화 하는 최적화 K-means 클러스터링 기법을 제안한다. 장면의 SIFT 특징 기술자 정보뿐만 아니라 장면이 속해있는 클래스 정보를 결합하여 클러스터링을 수행함으로써 장면 분류의 정확도를 높일 수 있다. 장면 분류 정확도 실험에서 제안하는 클러스터링을 사용한 BoW 장면 분류 기법은 기존의 K-means을 사용한 BoW 장면 분류 기법보다 높은 정확도를 보여준다.

목차

요약
1. 서론
2. Bag-of-Words 기반의 장면 분류
3. 클래스 정보 활용 클러스터링 기반의 BoW 기법
4. 실험 결과 및 분석
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002816113