메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이종찬 (청운대학교) 이원돈 (충남대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제16권 제1호
발행연도
2012.1
수록면
33 - 40 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 생물 조기 경보 시스템을 구현하기 위한 방법을 제안한다. 이 시스템은 모니터링 데몬을 이용해 간헐적으로 데이터 사건을 생성하고, 이 데이터 집합으로부터 특징 매개변수들을 추출한다. 특징 매개변수는 6개의 변수(x/y 축 좌표, 거리, 절대 거리, 각도, 프랙털 차원)를 가지고 유도된다. 특히 프랙털 이론을 사용해 제안 알고리즘은 입력된 특징들이 독성 환경에 있는지 아닌지의 유기물 특성을 정의한다. 추출된 특징 데이터를 학습하기 위한 적절한 알고리즘을 위해 기계학습 분야에서 널리 쓰이는 확장된 학습 알고리즘(UChoo)을 사용한다. 그리고 본 알고리즘은 특징 집합들이 모니터링 데몬에 의해 주기적으로 추가된다는 BEWS의 특징을 극복하기 위해 확장된 데이터 표현 방법을 이용하는 학습 방법을 포함한다. 이 알고리즘에서 결정트리 분류기는 확장된 데이터 표현에서 가중치 매개변수를 사용하는 부류 분포 정보를 정의 한다. 실험 결과들은 제안된 BEWS가 환경적인 독성을 탐지하는 데 이용 될 수 있음을 보인다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 배경
Ⅲ. 새로운 BEWS
Ⅳ. 실험
Ⅴ. 결론
참고문헌

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0