메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조익성 (부산대학교) 권혁숭 (부산대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제15권 제10호
발행연도
2011.10
수록면
2,223 - 2,230 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
심전도는 심근허혈, 부정맥, 심근경색과 같은 심장질환의 진단에 이용된다. 특히 심근허혈은 ST 세그먼트의 형태 변화가 나타나는데, 이러한 변화는 일시적으로 나타나며 특별한 증상을 동반하지 않는다. 따라서 지속적인 모니터링을 통해서 ST의 일시적인 변화를 검출하는 것이 매우 중요하다. 이에 본 연구에서는 심근허혈 진단을 위한 ST세그먼트 형태 분류 알고리즘을 제안한다. 이는 전처리 과정과 적응가변형 문턱치를 통해 R파와 각 특징점을 검출한 후 S와 T파사이의 굴곡점으로부터 특정한 기울기 정보를 추출하여 ST의 기울기 기준점과 비교함으로써, 검출된 ST를 6가지 형태로 분류하는 방법이다. 개발된 알고리즘은 심전도로부터 ST 레벨 변화 구간을 검출하고, 검출된 구간에 대해서도 ST의 형태를 분류함으로써 심전도 레벨 변화뿐만 아니라 형태에 대한 정보도 제공한다. 제안한 알고리즘의 심근허혈 패턴 진단 성능을 평가하기 위해서 European ST 데이터베이스를 사용하였다. 성능 평가 결과 가장 높은 분류성공률은 99.4%이며, 낮은 성공률은 68.48%를 나타내었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. ST 세그먼트의 특징
Ⅲ. 제안한 알고리즘
Ⅳ. 성능 평가
Ⅴ. 결론
참고문헌

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-550-002862757