메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
D. Prince Winston (Thiagarajar College of Engineering) M. Saravanan (Thiagarajar College of Engineering)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.8 No.5
발행연도
2013.9
수록면
1,049 - 1,055 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
DC motors are widely used in industries like cement, paper manufacturing, etc., even today. Early fault identification in dc motors significantly improves its life time and reduces power consumption. Many conventional and soft computing techniques for fault identification in DC motors including a recent work using model based analysis with the help of fuzzy logic are available in literature. In this paper fuzzy logic and norm based wavelet analysis of startup transient current are proposed to identify and quantify the armature winding fault and bearing fault in DC motors, respectively. Results obtained by simulation using Matlab and Simulink are presented in this paper to validate the proposed work.

목차

Abstract
1. Introduction
2. Frequency Effects on Fault Signal
3. Discrete Wavelet Transform (DWT)
4. Proposed Method
5. Conclusion
References

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-500-002878631