메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
백열민 (한양대학교) 김중근 (한양대학교) 김회율 (한양대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제18권 제4호
발행연도
2013.7
수록면
643 - 646 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 아다부스트의 과적합 문제를 해결하기 위해 샘플 군집화를 이용한 개선된 아다부스트 알고리즘을 제안한다. 아다부스트는 다양한 객체 검출 방법에서 좋은 성능을 보이는 방법으로 알려져 있지만 훈련 샘플에 노이즈가 존재하는 경우 과적합 현상이 발생하는 문제가 있다. 이를 해결하기 위해 제안하는 방법은 우선 훈련 샘플의 긍정 샘플을 k-평균 군집화 알고리즘을 이용하여 K개의 군집으로 나눈다. 이후 아다부스트의 약분류기 훈련 시 K개의 군집 중 훈련 오차를 최소화하는 하나의 군집만을 선택하여 사용한다. 이로써, 제안하는 방법은 매 회 반복되는 약분류기의 훈련 시 훈련 샘플들이 과분할 되는 것과 노이즈 샘플이 훈련에 사용되는 것을 방지함으로써 기존 아다부스트의 과적합 현상을 효과적으로 줄여준다. 실험 결과, 제안하는 방법은 다양한 실제 데이터셋에서 기존의 부스팅 기반 방법들에 비해 더 나은 분류 성능 및 일반화 성능을 보여주었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 방법
Ⅲ. 실험 결과
Ⅲ. 결론
참고문헌

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002931613