메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안태형 (연세대학교) 김예나 (연세대학교) 이수경 (연세대학교)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제38권 제7호(네트워크 및 서비스)
발행연도
2013.7
수록면
512 - 518 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
분산 클라우드 컴퓨팅에서 자원 할당 알고리즘은 사용자 만족도와 서비스 수용 및 처리 능력과 밀접한 관련을 가지기 때문에 중요하다. 즉, 분산 클라우드에서는 서비스 처리를 위해 이용가능한 자원이 없을 때 발생하는 서비스 거부는 사용자 만족도를 반감시킨다. 따라서 본 논문에서는 서비스 거부를 최소화하기 위하여 데이터센터 자원상황을 고려한 자원 할당 알고리즘을 제안한다. 제안하는 알고리즘은 Q-Learning 기반의 자원 할당량 학습에 의해서 클라우드 데이터센터에서 최대 자원 할당량 만큼 할당을 할 수 있으면 자원 할당량이 증가하고 그렇지 못할 때는 자원 할당량이 감소하게 된다. 본 논문에서는 제안하는 알고리즘과 기존의 두 알고리즘을 평가하고 제안하는 알고리즘이 두 알고리즘 보다 낮은 서비스 거부율을 보임을 증명한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 분산 클라우드 시스템을 위한 시스템 모델
Ⅲ. 시뮬레이션
Ⅳ. 결론
References

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002932403