메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Makara Vanny (Chung-Ang University) Seung-Min Park (Chung-Ang University) Kwang-Eun Ko (Chung-Ang University) Kwee-Bo Sim (Chung-Ang University)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제23권 제3호
발행연도
2013.6
수록면
262 - 267 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The recognition of human emotional state is one of the most important components for efficient human-human and human-computer interaction. In this paper, four emotions such as fear, disgust, joy, and neutral was a main problem of classifying emotion recognition and an approach of visual-stimuli for eliciting emotion based on physiological signals of skin conductance (SC), skin temperature (SKT), and blood volume pulse (BVP) was used to design the experiment. In order to reach the goal of solving this problem, half-against-half (HAH) multi-class support vector machine (SVM) with Gaussian radial basis function (RBF) kernel was proposed showing the effective techniques to improve the accuracy rate of emotion classification. The experimental results proved that the proposed was an efficient method for solving the emotion recognition problems with the accuracy rate of 90% of neutral, 86.67% of joy, 85% of disgust, and 80% of fear.

목차

Abstract
1. Introduction
2. Related Works
3. Meaning feature extraction fromphysiological responses
4. Physiological response-based emotion recognition
5. Conclusion
References

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-020-003195316