메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창길 (성균관대학교) 박웅기 (성균관대학교) 박승희 (성균관대학교)
저널정보
한국비파괴검사학회 비파괴검사학회지 비파괴검사학회지 제31권 제4호
발행연도
2011.8
수록면
351 - 359 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 토목, 기계 및 항공 분야에서 구조물의 안전성 및 적정 성능 수준 확보를 위하여 구조물의 결함 및 노후화에 의한 성능저하 등을 상시적으로 모니터링하기 위한 관심이 높아지고 있다. 실제 구조물에서는 내부 미세 균열에서부터 국부 좌굴, 볼트 풀림, 피로 균열 등과 같이 다양한 형태의 손상이 복합적으로 발생 가능한데, 복합 손상을 단일 모드 계측 시스템으로부터 진단하기는 매우 어렵다. 따라서 본 연구에서는 이러한 복합 손상을 효율적으로 진단하기 위하여 선행 연구에서 제안된 압전센서를 이용한 자가 계측 회로 기반의 다중 모드 계측 시스템을 적용하였다. 자가 계측 회로 기반 다중 모드 계측 시스템은 크게 두 가지 형태의 신호를 계측한다. 첫 번째 모드는 임피던스 계측으로부터 특정 주파수 대역의 구조 응답을 계측하며, 두 번째 모드는 유도 초음파 계측으로부터 단일 중심 주파수에 해당하는 구조 응답을 계측한다. 복합 손상을 손상 유형별로 분류하기 위하여 E/M 임피던스와 유도 초음파의 계측으로부터 추출한 특성을 이용하여 2차원 손상지수를 계산하고 이를 지도학습 기반 패턴인식 기법 중 확률론적 신경망 기법에 적용한다. 제안된 기법의 적용성 검토를 배관 구조물에 인위적으로 다중 손상을 생성시켜 실험을 수행하였다.

목차

초록
Abstract
1. 서론
2. 다중 모드 계측 및 확률론적 신경망 기법의 이론적 배경
3. 손상 분류 및 정량화 실험
4. 결론
참고문헌

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-500-003260040