메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
K. Y. Jang (Tech Center General Motors Corporations Warren) C. J. Sung (Namseoul University) I. S. Lim (Namseoul University)
저널정보
한국신뢰성학회 International Journal of Reliability and Applications International Journal of Reliability and Applications 제10권 제1호
발행연도
2009.6
수록면
1 - 15 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Even though the impact of manufacturing quality to reliability is not considered much as well as that of design area, a major cause of an early failure of the product is known as manufacturing problem. This research applies two different types of neural network algorithms, the Back propagation (BP) algorithm and Learning Vector Quantization (LVQ) algorithm, to identify and classify the nonrandom variation pattern on the control chart based on knowledge-based diagnosis of dimensional variation. The performance and efficiency of both algorithms are evaluated to choose the better pattern recognition system for auto body assembly process. To analyze hundred percent of the data obtained by Optical Coordinate Measurement Machine (OCMM), this research considers an application in which individual observations rather than subsample means are used. A case study for analysis of OCMM data in underbody assembly process is presented to demonstrate the proposed knowledge-based pattern recognition system.

목차

Abstract
1. INTRODUCTION
2. NETWORK STRUCTURE
3. DIAGNOSIS OF THE NONRANDOM PATTERNS
4. CASE STUDY
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-320-003279452