고해상도 위성영상은 높은 공간해상도의 이점으로 도심지역의 건물 및 도로망 분석, 경관 분석, 생태 환경 평가 등 다양한 분야에 활용되고 있다. 그러나 도심지역의 건물, 교량, 기타 구조물 등 높이 변화를 갖는 개체들은 영상 전체에 걸쳐 그림자 문제를 필연적으로 야기한다. 본 연구에서는 다양한 토지 이용 요소를 포함하는 넓은 영역의 도심지에 그림자 추출 기법을 적용하고, 수동으로 추출된 참조 그림자 지도와 비교하여 정량적인 평가를 수행하였다. 이를 위해 Canny 연산자와 팽창 필터를 이용하여 건물 영역의 인접 정보에 대한 버퍼 영역을 생성하고, Gram-Schmitt 융합 영상에 객체분할기법을 적용하여 생성된 객체들의 분광, 공간 인자들을 계산하였다. 이후 계산된 분광 및 공간 인자 특성과 건물 버퍼 영역과의 중첩여부를 바탕으로 도심지역의 그림자 추출에 가장 적합한 인자와 임계 규칙을 생성하였으며 추출된 그림자 지역 중 이상 객체를 추가적으로 제거하였다. 다양한 정량적 평가지수를 통해 제안된 그림자 추출 기법을 평가한 결과80%~90%의 높은 정확도를 나타냈다.
High resolution satellite images have been used for building and road system analysis, landscape analysis, and ecological assessment for several years. However, in high resolution satellite images, shadows are necessarily cast by manmade objects such as buildings and over-pass bridges. This paper develops the shadow extraction procedures in urban area including various land-use classes, and the extracted shadow areas are evaluated by a manually digitized shadow map. For the shadow extraction, the Canny edge operator and the dilation filter are applied to make building edge buffer area. Also, the object-based segmentation was performed using Gram-Schmitt fusion image, and spectral and spatial parameters are calculated from the segmentation results. Finally, we proposed appropriate parameters and extraction rules for the shadow extraction. The accuracy of the shadow extraction results from the various assessment indices is 80% to 90%.