메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mai Ba Loc (Korea Maritime University) Hyeung-Sik Choi (Korea Maritime University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2012
발행연도
2012.10
수록면
1,742 - 1,746 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a design of self-tuning gain depth controller for the autonomous underwater vehicle KAUV-1 which has been under development at the Intelligent Robot & Automation Lab, Korea Maritime University (KIAL). The vehicle is shaped like a torpedo with light weight and small size and used for marine exploration and monitoring. The KAUV-1 has a unique ducted propeller located at aft end with yawing actuation acting as a rudder. For depth control, the KAUV-1 uses a mass shifter mechanism to change its center of gravity, consequently, can control pitch angle and depth of the vehicle. A design of classical PD depth controller for the KAUV-1 was presented and analyzed in [11]. However, it has inherent drawback of gains, that is their values are fixed. Meanwhile, in different operation modes, vehicle dynamics might have different impacts on the behavior of the vehicle, for example, ones in modes of diving and moving up as mentioned in [11]. This requires a set of flexible or self-tuning gains, i.e., their values are appropriately changed according to vehicle operating states, for a better performance. This paper presents a self-tuning gain depth controller using fuzzy logic method which based on the classical PD controller derived from [11]. Its self-tuning gains are outputs of fuzzy logic blocks. Fuzzy logic is a simple and efficient control method very suitable for this case because it could be designed based on designer’s sense and experience with flexible rules without a model. The performance of the self-tuning gain controller will be simulated by Matlab/Simulink and compared to the one of the classical PD controller.

목차

Abstract
1. INTRODUCTION
2. VEHICLE SPECIFICATIONS
3. CLASSICAL PD CONTROLLER
4. SELF-TUNING GAIN CONTROLLER
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0