메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Il Young Song (Gwangju Institute of Science and Technology) Vladimir Shin (Gyeongsang National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2012
발행연도
2012.10
수록면
1,118 - 1,122 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An urban road surface monitoring system is developed to monitor highway conditions. This paper uses principle component analysis (PCA) that combines 94 GHz dual-channel polarimetric radiometer and automatic weather station measurements. The goal of this paper is to combine these observations into a smaller number of variables through PCA. Each new variable has a unique physical interpretation. In particular, we are concerned with principal component variables whose weightings include brightness temperature and road surface temperature. Then, four different road surface classes (dry, wet, snowy, and icy) are classified by Bayesian classification. The novelty of our approach relies on using 94 GHz dual-channel polarimetric radiometer is used to investigate behavior of the brightness temperature of different road surface conditions in an open-air laboratory. On the other hand, the median absolute deviation algorithm is used to remove extreme values automatically from a given database of weather information (including brightness temperature, road surface temperature, wind speed, etc.) for robust classification. Finally, the road surface statuses were found to be well classified by the proposed method in real time.

목차

Abstract
1. INTRODUCTION
2. MEDIAN ABSOLUTE DEVIATION ALGORITHM
3. EXPERIMENTAL SETTINGS
4. EXPERIMENT RESULTS AND DISUCSSIONS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0