메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2012
발행연도
2012.10
수록면
720 - 725 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In reality, a system is almost nonlinear. To estimate the parameter or state of this system, nonlinear approach is needed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used to estimate this nonlinear problem. EKF uses first order Taylor expansion to approximate the nonlinear system, while UKF performs a stochastic linearization by using a weighted statistical linear regression process. The purpose of this paper is to estimate the state of the nonlinear suspension system based on the Extended Kalman Filter and the Unscented Kalman Filter. The simulation deals with state estimation of nonlinear suspension system by using these filters and is compared with the true state. Also LQR controller and output feedback PD controller will be designed by aid of UKF and EKF estimation. Simulation results show that two nonlinear Kalman filters are effective in estimating the state of a nonlinear suspension system.

목차

Abstract
1. INTRODUCTION
2. NONLINEAR SUSPENSION MODEL
3. EXTENDED KALMAN FILTER
4. UNSCENTED KALMAN FILTER
5. CONTROLLER DESIGN
6. SIMULATION
7. CONCLUSIONS AND FUTUREWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0