메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김기원 (단국대학교) 전준철 (금오공과대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제18권 제2호
발행연도
2013.4
수록면
41 - 46 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
유한체상의 곱셈기는 오류 제어 코드, 암호시스템 및 디지털 신호처리와 같은 여러 분야의 기본적인 구성 요소이다. 최근 다양한 유한체상의 곱셈기가 세미-시스톨릭 구조를 기반으로 제안되었다. 또한, 몽고메리 알고리즘은 효율적인 곱셈 연산 알고리즘으로 잘 알려져 있다. 본 논문은 유한체 상에서 다항식 표현을 사용하여 효율적인 몽고메리 곱셈 알고리즘을 유도하고 이를 기반으로 세미-시스톨릭 몽고메리 곱셈기를 제안한다. 제안한 곱셈기는 병렬 구조에 적합한 몽고메리 인자를 선택하였으며 전체 계산 구조를 두 부분으로 나누어 동시에 계산할 수 있다. 제안한 곱셈기는 기존의 곱셈기에 비해 시간 복잡도를 30%~50% 정도 줄임으로써 전체 시간 복잡도의 30% 정도를 줄였다.

목차

요약
Abstract
1. 서론
2. GF(2sup{m}/sup)상의 몽고메리 곱셈
3. 제안하는 몽고메리 곱셈기
4. 성능 비교
5. 결론
참고문헌

참고문헌 (2)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-000-003663168