메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서경민 (한국과학기술원) 송해상 (서원대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제13권 제4호
발행연도
2013.4
수록면
53 - 63 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 효율적인 몬테 칼로 시뮬레이션을 위하여 중요 샘플링(Importance sampling) 기법이 내장된 실험 틀을 제안한다. 제안하는 실험 틀은 중요 샘플링 기법을 적용하기 위해 기능적으로 세분화된 중요 표본기(Importance Sampler)와 편향 보상기(Bias Compensator)라는 두 개의 하위 모델을 내장(Embedded)한다. 이러한 하위 모델은 기존의 시스템 모델과 실험 틀의 경계에 플러그인 됨으로써 기존 모델들의 수정없이 재사용할 수 있는 장점이 있다. 그리고 제안하는 실험 틀은 기능적 측면에서 중요 사건에 대하여 동일한 수준의 결과를 얻는 데 있어 기존의 몬테 칼로 시뮬레이션보다 시뮬레이션 시간을 단축시킬 수 있다. 이러한 효용성을 입증하기 위해 두 가지 실험을 수행하였는데, 실험 결과, 본 실험에 대하여 기존의 몬테 칼로 시뮬레이션보다 최대 400 배 가량의 시뮬레이션 시간 측면에서 성능 향상을 확인하였다. 본 논문에서 제안하는 실험 틀은 다양한 콘텐츠 분야에 적용되어 시뮬레이션 성능을 향상시킬 수 있는 도구로 활용할수 있을 뿐 아니라, 교육적 측면에서 다양한 사회 현상을 이해하고 해석하는 도구로도 활용이 가능하다.

목차

요약
Abstract
I. 서론
II. 관련 연구
III. 본론
IV. 실험
V. 결론
참고문헌

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-000-003673797