This review was to elucidate the fate of Bentazon(3-isopropyl- 1H-2,1,3-benzothiadiazin-4(3H)-one-2,2-dioxide) and its metabolites in soil. Bentazon is rapidly degraded to form polar metabolites which are mostly adsorbed to soil components, such as humin or fulvic acid, as non extractable forms and mineralized into CO2 by light or micro-organisms in both aerobic or nonaerobic condition. The degradation of Bentazon is dependent on the rate of organic matters in soil and the use of land for the tillage. The degradation rate is decreased as the amount of organic matters in soil increases and if the land is under use for tillage. Sorption and mobility of Bentazon depends on soil pH and the content of organic matters in soil. Usually, the sorption of the metabolites of Bentazon is decreased with increase in the mobility and pH. Almost all of Bentazon is degraded within rhizosphere or forms conjugate bonds with soil organic matters before it reaches to the ground water.