메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
P.-A. Eggertsen (Chalmers University of Technology) Kjell Mattiasson (Chalmers University of Technology) Mats Larsson (Saab Automobile)
저널정보
한국소성·가공학회 기타자료 The 8th International Conference and Workshop on numerical simulation of 3D seet metal forming processes (NUMISHEET 2011)
발행연도
2011.8
수록면
1,064 - 1,071 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to be able to form high strength steels with low ductility, multi-step forming processes are becoming more common. Benchmark 4 of the NUMISHEET 2011 conference is an attempt to imitate such a process. A DP780 steel sheet with 1.4 mm thickness is considered. In order to understand the pre-strain effect on subsequent forming and springback, a 2D draw-bending is considered. Two cases are studied: one without pre-strain and one with 8% pre-stretching. The draw-bending model is identical to the “U-bend” problem of the NUMISHEET’93 conference. The purpose of the benchmark problem is to evaluate the capability of modern FE-methods to simulate the forming and springback of these kinds of problems.
The authors of this article have previously made exhaustive studies on material modeling in applications to sheet metal forming and springback problems, [1],[2],[3]. Models for kinematic hardening, anisotropic yield conditions, and elastic stiffness reduction have been investigated. Also procedures for material characterization have been studied. The material model that mainly has been used in the current study is based on the Banabic BBC2005 yield criterion, and a modified version of the Yoshida-Uemori model for cyclic hardening. This model, like a number of other models, has been implemented as User Subroutines in LS-DYNA. The effects of various aspects of material modeling will be demonstrated in connection to the current benchmark problems.
The provided material data for the current benchmark problem are not complete in all respects. In order to be able to perform the current simulations, the authors have been forced to introduce a few additional assumptions. The effects of these assumptions will also be discussed.

목차

Abstract
INTRODUCTION
MATERIAL MODELING
MATERIAL CHARACTERIZATION
SPRINGBACK
CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0