메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Takayuki HAMA (Kyoto University) Hitoshi FUJIMOTO (Kyoto University) Hirohiko TAKUDA (Kyoto University)
저널정보
한국소성·가공학회 기타자료 The 8th International Conference and Workshop on numerical simulation of 3D seet metal forming processes (NUMISHEET 2011)
발행연도
2011.8
수록면
314 - 321 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents the prediction of yield loci for an AZ31 magnesium alloy sheet using a rate-dependent crystal-plasticity finite-element method. A differential work-hardening behavior was clearly observed; the contour of plastic work was initially rather flattened in the vicinity of equi-biaxial tension, but thereafter severely bulged. The variation of the relative activity of each family of slip systems was examined to investigate the mechanism of the differential work-hardening behavior. During uniaxial tension, the work hardening was determined mainly by the basal slip in the very beginning, while by both the prismatic slip and the basal slip in the subsequent deformation. On the other hand, during equi-biaxial tension, the activity of the basal slip systems was predominant throughout the deformation, while the relative activity of the prismatic slip systems was smaller than that in the uniaxial tension. We concluded that this difference in the relative activities of the slip systems depending on the biaxial-stress ratio eventually resulted in the differential work-hardening behavior of the contour of plastic work. The mechanism that the activity of the prismatic slip systems decreased as the biaxial-stress ratio approached to one was also discussed using a simple analytical model.

목차

Abstract
INTRODUCTION
FINITE-ELEMENT FORMULATION
MATERIAL MODELLING
RESULTS AND DISCUSSION
CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0