메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Keunho Choi (Korea University) Gunwoo Kim (Hanbat National University) Yongmoo Suh (Korea University)
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2012년 추계학술대회
발행연도
2012.12
수록면
127 - 134 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
As credit loan products significantly increase in most financial institutions, the number of fraudulent transactions is also growing rapidly. Therefore, to manage the financial risks successfully, the financial institutions should reinforce the qualifications for a loan and augment the ability to detect a credit loan fraud proactively. In the process of building a classification model to detect credit loan frauds, utility from classification results (i.e., benefits from correct prediction and costs from incorrect prediction) is more important than the accuracy rate of classification. The objective of this paper is to propose a new approach to building a classification model for detecting credit loan fraud based on an individual-level utility. Experimental results show that the model comes up with higher utility than the fraud detection models which do not take into account the individual-level utility concept. Also, it is shown that the individual-level utility computed by the model is more accurate than the mean-level utility computed by other models, in both opportunity utility and cash flow perspectives. We provide diverse views on the experimental results from both perspectives.

목차

Abstract
Introduction
Literature Review
Proposed Individual-Level Utility-Sensitive Classification Model
Experiments
Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-003-000361582