메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Daecheol Park (Korea University) Rohae Myung (Korea University) Sang-Hyeob Kim (Electronics and Telecommunications Research Institute) Eun-Hye Jang (Electronics and Telecommunications Research Institute) Byoung-Jun Park (Electronics and Telecommunications Research Institute)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제31권 제6호
발행연도
2012.12
수록면
705 - 713 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: The aim of this study is to predict human visual target search using ACT-R cognitive architecture in real scene images. Background: Human uses both the method of bottom-up and top-down process at the same time using characteristics of image itself and knowledge about images. Modeling of human visual search also needs to include both processes. Method: In this study, visual target object search performance in real scene images was analyzed comparing experimental data and result of ACT-R model. 10 students participated in this experiment and the model was simulated ten times. This experiment was conducted in two conditions, indoor images and outdoor images. The ACT-R model considering the first saccade region through calculating the saliency map and spatial layout was established. Proposed model in this study used the guide of visual search and adopted visual search strategies according to the guide. Results: In the analysis results, no significant difference on performance time between model prediction and empirical data was found. Conclusion: The proposed ACT-R model is able to predict the human visual search process in real scene images using salience map and spatial layout. Application: This study is useful in conducting model-based evaluation in visual search, particularly in real images. Also, this study is able to adopt in diverse image processing program such as helper of the visually impaired.

목차

ABSTRACT
1. Introduction
2. Related Works
3. Experiment
4. Model Development
5. Results
6. Discussion
7. Conclusion
Acknowledgements
References
Author listings

참고문헌 (31)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-530-000635550