메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Guangfei Yang (Waseda University) Shingo Mabu (Waseda University) Kaoru Shimada (Waseda University) Kotaro Hirasawa (Waseda University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
2,920 - 2,925 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The association rules have been demonstrated to beuseful for classification, like CBA, CMAR. However, the rule mining procedure does not focus on classification, and most of the rues will be pruned in classification. As a result, if we could directly mine the classification as sociation rules, the time will be saved. Mean while, we could expect even better accuracy because the mining procedure it self considers the classification. In this paper, we build a novel evolution ary method, named Evo CMAR, to directly mine classification association rules.

목차

Abstract
1.INTRODUCTION
2.MAIN IDEAS OF EVOCMAR
3.MAIN PROCEDURES OF EVOCMAR
4.SIMULATION STUDIES
5.CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000767685